

PREPARATION of HYBRID COATINGS with CONTROLLED WETTABILITY: Process Parameter Study

M. L. Iordache, D. Hritcu, G. Dodi, D. Draganescu, M. I. Popa *"Gheorghe Asachi" Technical University of Iasi, Romania*

Introduction/motivation

 \rightarrow excellent way to resolve separation problems

Reference: "Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation" (under review)

Objectives and Outline

Main objective: The aim of this paper is to investigate the effect of the variables that influence the wetting angle and the coating morphology on promising hybrid films with structured roughness for water repellent applications.

- Synthesis/characterization of coating components
- Hybrid thin film preparation
- The effects of the process parameters
- Conclusions and future work

Coating components:

st - Polymeric binder: Chitosan (CS)

Ind - Coupling agent: Hexadecyltrimethoxy silane (HSi) or/and Tetraethyl orthosilicate (TEOS)

IIIrd - Composite particles: Magnetic-chitosan g-styrene (Mag-CSg-ST)

st - Chitosan dissoved in 1M acetic acid (CS).

IInd - Coupling agent

a) Hexadecyltrimethoxy silane hydrolysis (HSi)

Reference: Spirk et al., Carbohydrate Polymers 93 (2013) 285-290.

b) Tetraethyl orthosilicate hydrolysis (TEOS)

IIIrd - Composite particles

a) Magnetite nanoparticles preparation (Mag)

$$Fe^{2+} + 2Fe^{3+} + 8HO^{-} = Fe_3O_4 + 4H_2O$$

Reference: G.Dodi et al./J. Magn. Magn. Mater. 388 (2015) 49-58.

Characterization of composite particles(Mag-CSg-ST)

Figure 1. TEM pictures of Mag-CSg-ST

Characterization of composite particles(Mag-CSg-ST)2. XRD3. Magnetization

Material	Average size (TEM) (nm)	Size (XRD) (nm)	Batch	Magnetization, emu/g	Magnetite, % experimental
Fe ₃ O ₄	13	9.17	Mag	65.8	100
Fe ₃ O ₄ -CSg-ST	11.65	10.64	MagCSgST	43.8	66.6

Characterization of composite particles(Mag-CSg-ST) 4. FTIR 5. DLS

The chitosan, acrylates and styrene peaks are overlapped therefore, an exact estimation of chemical structure was not possible.

Size Mag-CSg-ST: 328 nm

The effects of the process parameters

1. Coating composition and coating morphology

	Plate	Mag-CS <i>g</i> - ST. %	CS, %	HSi, %	Wetting angle, ⁰	Histerezis	Morphology	
	13	1	0	0.03	120.8	6.9	inter priorogy	
	14	1	0.2	0.03	76	3.7	One layer, Spin	
	15	1	0.5	0.03	79.9	3.7		
	16	1	0.5	0.06	88.3	4.2	coater	
	34	1	1	0.03	91.7	2.8		
	38	1	1	0.17	113.4	1.9		
	54	1.7	1	0.17	137.9	2.6	Layer by layer	
•	82	1.7	0	0.17	145.9		2 layers each	

2. Solvent in composite particle dispersion (IIIrd)

Plate	Solvent Wetting angle, ⁰		Histerezis
66	water/ethanol mixture	140.1	1.5
112	water	110.2	3.4
113	ethanol	110.4	4.4

66 plate

Plate	Time (h)	Wetting angle, ⁰	Histerezis
109	24	121.5	2.2
110	48	120.6	2.3
92	68	119.1	1.9
66	72	140.1	1.5
118	96	115.6	2.7

4. HSi addition time before deposition (IInd)

Plate	Time	Wetting angle, ⁰	Histerezis	Observation
141	15 h before deposition	112.6	2.6	drying 3min, 70 ⁰ C
	10 min. before			
133	deposition	122.7	0.7	drying 3min, 70°C

5. CS concentration (Ist)

Plate	CS conc., %	Wetting angle, ⁰	Histerezis	Observation
145	0.5	105.3	2.3	drying 3min, 70°C
146	0.75	100.8	2.9	drying 3min, 70°C
147	1	120.6	1.6	drying 3min, 70°C

6. TEOS in silane mixture (IInd)

Plate	HSi (%)	TEOS (%)	Wetting angle, ⁰	Histerezis
66	100	0	140.1	1.5
120	99	1	117.7	2.4
114	95	5	118.6	1.5
115	80	20	115.4	1.6
116	65	35	118.9	2.2
117	50	50	115.9	2.7

7. Layers drying conditions

Plate	Parameter	Wetting angle, ⁰	Histerezis	Observation
129	5min, 70°C	124.7	1.1	two layers
131	3min, 50°C	120.2	1.6	two layers
130	3min, 50°C	120.2	1.1	one layer
133	3min, 70°C	122.7	0.7	two layers
134	3min, 70°C	123.8	1	two layers, TEOS 1%
135	3min, 70°C	115.5	2.6	two layers, silane old
	3min 1 st layer			RT after first CS laver 70°C after
148	4 min 2 nd layer	113.1	1.9	2^{nd} ; drying RT after first Mag layer

8. Wetting angle versus deposition method

Plate	Spin coater	Airbrush	
CS	78.2	78 1	
CS	10.2	/0.1	
			-
			-
CS+SI	103.4	108.2	
Mag-CSg-ST			
+SI	120.8	146.9	
CS+HS1+	00.2	101 4	
Mag-CSg-ST	88.3	101.4	
(CS+HSi)/			
(Mag-CSg-			
ST+SI)	122.4	140.1	

* Optimum conditions:

- ✓ Solvent in particle dispersion: water/ethanol mixture;
- ✓ HSi hydrolysis time: 72 h;
- ✓ No TEOS in silane mixture;
- ✓ HSi addition time: 10 minutes before deposition;
- ✓ Deposition method: layer by layer;

Layer 1: 2 mL of CS 3% + 3.5 mL EtOH + 0.5 mL HSi

Layer 2: 2.5 mL of Mag-CSg-ST 2% in water/EtOH mixure + 0.5ml HSi

- ✓ Layer intermediate drying: with drying between layers 5 min. at 70° C;
- ✓ Plate is dried overnight at 70° C;
- ✓ The plate is then treated with 0.6% ammonia solution, rinsed and dried overnight again at 70°C.

Contact Angle and Non-Wetting Properties in Optimum Conditions

66 Plate Pictures

Characterization of optimum coating 1. EDX

Element	Weight, %	Normalized, %
Oxygen	53.11	61.85
Silicon	21.6	25.15
Nitrogen	5.16	6.01
Carbon	2.79	3.24
Iron	3.21	3.73

Characterization of optimum coating 2. SEM

SEM micrographs of hybrid coating CS+Si/MagCSgST+Si (66 plate)

• Magnetic chitosan grafted styrene particles were synthesized, characterized and successfully evaluated for the hybrid film preparation.

- Magnetic chitosan grafted styrene particles were synthesized, characterized and successfully evaluated for the hybrid film preparation.
- Hybrid coatings containing composite particles and polymeric binder crosslinked with one or two coupling agents were prepared.

- Magnetic chitosan grafted styrene particles were synthesized, characterized and successfully evaluated for the hybrid film preparation.
- Hybrid coatings containing composite particles and polymeric binder crosslinked with one or two coupling agents were prepared.
- The effects of various parameters were studied and reproducibility was improved.

- Magnetic chitosan grafted styrene particles were synthesized, characterized and successfully evaluated for the hybrid film preparation.
- Hybrid coatings containing composite particles and polymeric binder crosslinked with one or two coupling agents were prepared.
- The effects of various parameters were studied and reproducibility was improved.
- The ability of the composite particles to generate patterned films with hierarchical roughness and controlled wettability was demonstrated.

- Magnetic chitosan grafted styrene particles were synthesized, characterized and successfully evaluated for the hybrid film preparation.
- Hybrid coatings containing composite particles and polymeric binder crosslinked with one or two coupling agents were prepared.
- The effects of various parameters were studied and reproducibility was improved.
- The ability of the composite particles to generate patterned films with hierarchical roughness and controlled wettability was demonstrated.
- The water contact angle measurements evidenced hydrophobic surfaces.

Future work: test ice-repellent properties.

Acknowledgements

This work was supported by a grant of the Romanian Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0433.

THANK YOU FOR YOUR ATTENTION!